AP Chemistry Summer Assignment (Semester-Long)

The following assignment will not be collected. These topics and others, however, will be tested in the first unit of the semester. You will have a markedly sharper recall of chemistry topics and a distinctly lower workload for Unit 1 if you complete this assignment before the first day of school. Questions about the assignment may be directed to cwayand@wcpss.net.

Nomenclature

1. Name these binary compounds c	if two nonmetals.
IF ₇	As ₄ O ₁₀
N ₂ O ₅	SF ₆
XeF ₂	PCl ₃
N ₂ O	SCI ₂
2. Name these binary compounds v	vith cations of a fixed charge.
CsCl	SrBr ₂
MgO	Na ₂ S
Bal ₂	CaF ₂
K ₃ N	Al ₂ O ₃
3. Name these binary compounds v	vith cations of variable charge.
CuCl ₂	Cu ₂ S
Fe ₂ O ₃	HgS
SnO	Aul ₃
PbCl ₄	CoP
4. Name these compounds with po	lyatomic ions. Follow rules for cations.
Fe(NO ₃) ₃	K ₂ SO ₂
NaOH	NaHCO ₃
Cu ₂ SO ₄	NH ₄ NO ₂
Ca(ClO ₃) ₂	Cu ₂ Cr ₂ O ₇

ne these binary compounds of two ponmetals

5.	Name these	binary acids.
----	------------	---------------

	HCI	ні
6.	Name these oxoacids (acids with polyatomic ions).	
	HClO ₄	HNO ₂
	H ₂ SO ₄	H ₂ CrO ₄
	HC ₂ H ₃ O ₂	H ₂ C ₂ O ₄
	H ₃ PO ₄	H ₂ CO ₃
7.	Name these compounds appropriately. Apply the corr	rect naming convention.
	со	HF
	NH ₄ CN	SO ₂
	HIO ₃	CuCr ₂ O ₇
	NI ₃	K ₂ O
	AIP	FeF ₃
	OF ₂	PbSO ₄
	LiMnO ₄	KC ₂ H ₃ O ₂
	HCIO	MnS
8.	Write the formulas for these compounds.	
	tin (IV) phosphide	potassium nitride
	copper (II) cyanide	chromium (III) carbonate
	magnesium hydroxide	gallium arsenide
	sodium peroxide	cobalt (II) chromate
	sulfurous acid	zinc fluoride
	lithium silicate	dichromic acid

Solubility rules

9.	. Review solubility rules and identify the following compounds as soluble (aq) or insoluble (s) in water.		
Na ₂ CO ₃ FeS			
	CoCO ₃	PbCl ₂	
	Pb(NO ₃) ₂	CuSO ₄	
	K ₂ S	Li ₂ O	
	BaSO ₄	Mn(C ₂ H ₃ O ₂) ₂	
	(NH ₄) ₂ S	Cr(OH) ₃	
	Agl	AgClO ₃	
	Ni(NO ₃) ₂	Sn(SO ₃) ₄	
10.	Predict whether each of these double replacement reaction	ons will produce a precipitate or not based on the	
solubility of the products. If yes, identify the precipitate.			

silver nitrate and potassium chloride		
magnesium nitrate and sodium carbonate		
strontium bromide and potassium sulfate		
cobalt (III) bromide and potassium sulfide		
ammonium hydroxide and copper (II) aceta	te	

Balancing Equations

11. Balance the following equations with the lowest whole number coefficients.

$$\begin{array}{c} & S_{8} + \underline{} & O_{2} & \overline{\mbox{\mathbb{P}}} & SO_{3} \\ \hline & C_{10}H_{16} + \underline{} & CI_{2} & \overline{\mbox{\mathbb{P}}} & C + \underline{} & HCI \\ \hline & Fe + \underline{} & O_{2} & \overline{\mbox{\mathbb{P}}} & Fe_{2}O_{3} \\ \hline & Hg(OH)_{2} + \underline{} & H_{3}PO_{4} & \overline{\mbox{\mathbb{P}}} & Hg_{3}(PO_{4})_{2} + \underline{} & H_{2}O \\ \hline & H_{3}AsO_{4} & \overline{\mbox{\mathbb{P}}} & As_{2}O_{5} + \underline{} & H_{2}O \\ \hline & V_{2}O_{5} + \underline{} & HCI & \overline{\mbox{\mathbb{P}}} & VOCI_{3} + \underline{} & H_{2}O \\ \hline & C_{7}H_{6}O_{2} + \underline{} & O_{2} & \overline{\mbox{\mathbb{P}}} & CO_{2} + \underline{} & H_{2}O \end{array}$$

Writing Reactions

- 12. Write a **balanced equation with physical states** for the following:
 - a. Reaction of boron trifluoride gas with water to yield aqueous hydrofluoric acid and solid boric acid.
 - b. Reduction of iron (III) oxide by magnesium to form magnesium oxide and iron.
 - c. The decomposition of dinitrogen oxide gas into its elements.
 - d. Solid calcium carbide reacts with water to form calcium hydroxide and acetylene (C_2H_2) gas.
 - e. Solid calcium cyanamide (CaCN₂) reacts with water to form calcium carbonate and ammonia gas.
 - f. Ethane burns in air (oxygen).
 - g. Sodium reacts with iodine gas to form sodium iodide.
 - h. Carbon dioxide combines with water to form carbonic acid.
 - i. Magnesium and nitrogen gas combine to form magnesium nitride.

Quantitative Relationships in Chemistry

13. How many **significant figures** are in each of the following?

a.	1.9200 mm	 e.	0.000036 cm ³	
b.	0.0301001 kJ	 f.	10000 J	
c.	6.022 x 10 ²³ atoms	 g.	110. mL	
d.	460.000 L	 h.	0.001345 g	

14. Record the following in correct scientific notation:

a. 4050,000,000 cal c. 0.00345 g	
b. 0.000123 mol d. 700,000,000 atoms	

15. Calculate the following to the **correct number** of significant figures. Maintain units where appropriate.

a.	1.270 g / 5.296 cm ³ =	d.	170 g + 2.785 g =
b.	12.235 g / 1.010 L =	e.	2.100 cm × 3.2102 cm =
c.	12 g + 0.38 g =	f.	2.35 mL – 0.4 mL – 1.23 mL =

16. Calculate the number of moles of the following: (SHOW YOUR WORK!)

- a. $42.8 \text{ g of } \text{KNO}_3$
- b. 9.25×10^{26} formula units of CaCl₂
- c. $155.7 \text{ L of } \text{CO}_2 \text{ at } \text{STP}$

Stoichiometry and Limiting Reactants

16. Given the equation below, what mass of water would be needed to completely react with 10.0 g of sodium oxide?

 $_$ Na₂O (s) + $_$ H₂O (l) \square $_$ NaOH (aq)

17. _ NaClO₃ (s) 2 _ NaCl (s) + _ O₂ (g)

What mass of sodium chloride is formed along with 45.0 g of oxygen gas?

```
18. _NH_3(g) + _O_2(g) \supseteq _NO(g) + _H_2O(g)
```

What mass of water vapor will be produced when 100.0 g of ammonia is reacted with excess oxygen?

19. If the reaction in #18 is performed with 25.0 g of each reactant, which would be the limiting factor?

20. $Na_2S(aq) + AgNO(aq)$ $Particular Ag_2S(s) + NaNO_3(aq)$

If the above reaction is carried out with 50.0 g of sodium sulfide and 35.0 g of silver nitrate, which is the limiting factor?

What mass of the excess reactant remains?

What mass of silver sulfide would precipitate?

21. _ NaOH (aq) + _ Al (s) \square _ Na₃AlO₃ (aq) + _ H₂ (g)

What volume of hydrogen gas (measured at STP) would result from reacting 75.0 g of sodium hydroxide with 50.0 g of aluminum?